Permeability through a perforated domain for the incompressible 2D Euler equations
نویسنده
چکیده
We investigate the influence of a perforated domain on the 2D Euler equations. Small inclusions of size ε are uniformly distributed on the unit segment or a rectangle, and the fluid fills the exterior. These inclusions are at least separated by a distance ε and we prove that for α small enough (namely, less than 2 in the case of the segment, and less than 1 in the case of the square), the limit behavior of the ideal fluid does not feel the effect of the perforated domain at leading order when ε→ 0.
منابع مشابه
Stabilization of the incompressible 2D Euler equations in a simply connected domain utilizing the Lorentz force
In this paper, the null asymptotic stabilization of the 2D Euler equations of incompressible fluids in a simply connected bounded domain is investigated by utilizing the Lorentz force given by the Maxwell equations with Ohm’s law. 2004 Elsevier Inc. All rights reserved.
متن کاملThe Vanishing Viscosity Limit in the Presence of a Porous Medium
We consider the flow of a viscous, incompressible, Newtonian fluid in a perforated domain in the plane. The domain is the exterior of a regular lattice of rigid particles. We study the simultaneous limit of vanishing particle size and distance, and of vanishing viscosity. Under suitable conditions on the particle size, particle distance, and viscosity, we prove that solutions of the Navier-Stok...
متن کاملOn 2d incompressible Euler equations with partial damping
We consider various questions about the 2d incompressible Navier-Stokes and Euler equations on a torus when dissipation is removed from or added to some of the Fourier modes.
متن کاملOn the inviscid limit for 2D incompressible flow with Navier friction condition
In [1], T. Clopeau, A. Mikelić, and R. Robert studied the inviscid limit of the 2D incompressible Navier-Stokes equations in a bounded domain subject to Navier friction-type boundary conditions. They proved that the inviscid limit satisfies the incompressible Euler equations and their result ultimately includes flows generated by bounded initial vorticities. Our purpose in this article is to ad...
متن کاملIntegrable Structures for 2D Euler Equations of Incompressible Inviscid Fluids
The governing equation of turbulence, that we are interested in, is the incompressible 2D Navier– Stokes equation under periodic boundary conditions. We are particularly interested in investigating the dynamics of 2D Navier–Stokes equation in the infinite Reynolds number limit and of 2D Euler equation. Our approach is different from many other studies on 2D Navier–Stokes equation in which one s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013